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1.  Introduction:

This note describes the formalism and conventions used by the RHIC magnetic
measurements group in defining and measuring the multipoles in magnets of various
multipolarities, such as dipoles, quadrupoles, etc. Procedures are described for obtaining
multipoles for tracking studies when the actual configuration of a magnet in the
accelerator is different from that used in the measurements. Much of the information in
this note can be found in earlier publications[1] and numerous Magnet Test Group notes
by J. Herrera[2]. This note is an attempt to combine all the relevant information at one
place, in a manner consistent with measurement and tracking conventions used at RHIC.

2.  Magnetic Field Components in Cylindrical Coordinates:

The region of interest within the magnet aperture does not include electric currents. The
magnetic field in this region is most conveniently described in terms of a scalar magnetic
potential, Φm. We have,

∇ × = ⇒ = −∇ΦH H0     m                                                                                    (1)

∇ = ⇒ ∇ =. ;B 0 02         Φm    LAPLACE’S  EQN  FOR  SCALAR  POTENTIAL               (2)

The magnets in RHIC have a cylindrical geometry. The same applies to the rotating coil
measuring system used for measurements of harmonics in these magnets. This makes
cylindrical coordinates a natural choice for expressing the components of the magnetic
induction, B.

Solving the Laplace’s equation for the scalar magnetic potential, it can be shown that the
components of B in the region of the magnet aperture (containing the origin) can be
expressed in the form
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In Eqs.(3) and (4), C(n) are constants (assumed to be positive) having the dimension of
magnetic induction (Tesla) and are referred to as the  strength  of the 2n-pole component
of the field. The constant αn essentially controls the orientation of the 2n-pole field with
respect to a chosen coordinate frame and is called the phase angle of the 2n-pole
component of the field. Rref is an arbitrary reference radius, typically chosen as
approximately 5/8 of the magnet coil inner radius for the RHIC magnets. Thus, Rref is
chosen as 2.5cm for all the 8cm aperture magnets, 3.1cm for the 10cm aperture D0
dipoles, 4.0cm for the 13cm aperture quadrupoles/correctors and 6.0cm for the 18cm
aperture DX magnets.

Since the actual values of Br(r,θ) and Bθ(r,θ) must be independent of the choice of a
reference radius, it is clear from Eqs.(3) and (4) that the values of C(n) depend on the
choice of reference radius, except for the dipole term, n=1. The values of αn depend on
the choice of coordinate axes and rotation of the magnet about its longitudinal axis. Since
only the quantity (nαn) appears in the expansion, a phase angle of αn is the same as a
phase angle of (αn + 2π/n). Thus, without any loss of generality, we may write,

0 2      ≤ <α πn n/                                                                                                 (5)

The rotating coil measuring system is designed to obtain the constants C(n) and αn that
characterize the field. Since the values of αn depend on the choice of coordinate system, a
uniform convention is followed for all magnets, as follows:

It should be noted that this measurement coordinate convention is not necessarily the
same as the commonly used “MAD” accelerator convention. The implications of this are
discussed in detail in Sec. 6.

“When looking into the magnet from the LEAD END of the
magnet, the positive X-axis points towards the right hand
side, while the positive Y-axis points upwards, towards the
top of the magnet yoke, as shown in Fig.1. The origin is
chosen to be at the center of the magnet’s field.”

B

Br
B

By

Bx

X-axis

Y
-a

xi
s

θ

r

TOP

θ

θ
θ Fig.1 The coordinate system used in

the measurement of magnets, as
viewed from the lead end of the
magnet. The “Top” denotes top
of the magnet yoke.

CONVENTION  1
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3.  The Cartesian Components of the Magnetic Field:

Various accelerator codes used for tracking studies prefer to work with the Cartesian,
rather than the cylindrical components of the magnetic induction, B. To obtain the
Cartesian components (see Fig.1), we use,

B r B Bx r( , ) cos sinθ θ θθ      = −                                                                             (6)

B r B By r( , ) sin cosθ θ θθ      = +                                                                             (7)

Substituting for Br and Bθ from Eqs.(3) and (4), we get,
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In accordance with the prevailing practice at US laboratories, the limits on the summa-
tions are changed by re-writing the above equations as
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We now define the Normal and Skew components of the 2(n+1)-pole field as:

B C n nn n= + + +  ( )cos[( ) ]1 1 1α       NORMAL COMPONENT: 2(n+1)-POLE FIELD      (12)

A C n nn n= − + + +( )sin[( ) ]1 1 1α       SKEW  COMPONENT: 2(n+1)-POLE FIELD          (13)

In terms of the normal and skew components, the Cartesian components of  B  are:

B r r R B n A nx ref
n

n
n n( , ) ( / ) [ sin( ) cos( )]θ θ θ= +

=

∞

∑
0

                                               (14)

B r r R B n A ny ref
n

n
n n( , ) ( / ) [ cos( ) sin( )]θ θ θ= −

=

∞

∑
0

                                               (15)

A 2m-pole magnet is “normal” if the corresponding skew component is zero. Similarly, a
magnet is “skew” if the corresponding normal component is zero. From Eqs.(12) and
(13), we get,
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α πm m     or    = 0 /                          NORMAL  2m-POLE  MAGNET                       (16)

α π πm m m  / ( )   or    3= 2 2/ ( )          SKEW  2m-POLE  MAGNET                           (17)

Out of the two possible values in Eqs.(16) and (17), αm = 0 gives Bm-1 > 0, whereas αm =
π/m  gives Bm-1 < 0. This merely corresponds to a reversal in the direction of the field.
Similarly, for a skew magnet, αm= 3π/2m gives Am-1 > 0 whereas αm=π/2m gives Am-1 < 0.
This leads us to another convention followed in the measurements of field components:

The locations of magnetic “poles” for any multipolar component are defined by maxima
or minima of the radial component, Br. Using phase angles given by Eqs.(16) and (17),
and Eq.(3) for Br, we get, under the conditions of convention 2,

θ π π= / ( ), / ( ),....2 5 2m m         SOUTH POLES:  2m-POLE  NORMAL MAGNET         (18)

θ π π= 3 2 7 2/ ( ), / ( ),....m m       NORTH POLES:  2m-POLE  NORMAL MAGNET         (19)

θ π= 0 2, / ,....  m                       SOUTH POLES:  2m-POLE  SKEW MAGNET              (20)

θ π π= / , / ,....m m  3                  NORTH POLES:  2m-POLE  SKEW MAGNET             (21)

The configurations for “positive” normal and skew dipole and quadrupole fields are
shown in Fig.2. It is also clear that a “positive” skew magnet (Am-1 > 0) is obtained by
rotating a “positive” normal magnet (Bm-1 > 0) clockwise by an angle of π/(2m). It should
be recalled that the magnet is being viewed from the lead end.

“All normal magnets are powered such that the
fundamental (2m-pole) term has a phase angle of αm

≈ 0. All skew magnets are powered such that αm ≈
3π/(2m). The measurement reference frame is then
rotated by a small angle such that αm is exactly zero
for normal magnets and is  3π/(2m)  for skew
magnets”

CONVENTION 2
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4.  Field Angles:

When the measurements are made with the magnets on precisely leveled stands
employing a measuring coil equipped with gravity sensors, it is possible to choose the x-
axis of the measurement reference frame to be precisely in the horizontal plane. With this
choice of coordinate frame, the phase angle αm in a 2m-pole magnet is nearly equal to
zero (normal magnet) or 3π/(2m) (skew magnet), but not exactly equal due to
construction features of the magnet. This difference from the ideal value is referred to as
Field Angle. Typical values of field angle are ~ 1 mrad for almost all the RHIC magnets,
except for the 8cm aperture corrector magnets where the field angles are typically
~5mrad.

When a magnet has a positive field angle, it means that the measured phase angle
αm>αideal [αideal = 0 for normal magnets, 3π/(2m) for skew]. The poles (locations of
extrema of Br) of such a magnet are shifted counterclockwise from the ideal positions
[see Eq.(3)]. In order to properly orient the field, such a magnet must be rotated clockwise
around its axis, as viewed from the lead end. This is illustrated for a normal quadrupole
magnet in Fig. 3.  Similarly, a magnet with a negative field angle must be rotated
counterclockwise, as viewed from the lead end, in order to properly orient the field. All
the arc dipoles and arc quadrupoles in RHIC, for example, are installed in this way based
on the measured field angles. For magnets that are not corrected for field angle in
installation, the measured field harmonics should be rotated appropriately before using
in the beam tracking programs (see Sec. 6.2).
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Fig.2 Views from the lead end for
normal and skew dipole and quad-
rupole magnets, illustrating the
power supply polarity convention
followed in the measurements of
magnets. All normal magnets with
2m poles have a south pole located
at  θ=π/(2m). For a normal quad-
rupole, this corresponds to a
focusing quadrupole for a positive
ion beam traveling from the non-
lead end towards the lead end. All
skew magnets have a south pole
located at θ=0.
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5.  The “Fractional Field Coefficients” or the “Multipoles”:

So far, we have described the field components in terms of [C(n), αn] or [Bn, An]. These
expansions involve the actual magnitude of the field in Tesla. These coefficients are thus
current dependent, even if the field shape remains the same. In practice, one is interested
in the magnitude of various multipolar terms in relation to the most dominant term. Thus,
for a 2m-pole magnet, we define the normal and skew multipoles as

b
B

C m
C n

C m
nn

n
n= × = × + + +10   104 4

( )
( )

( )
cos{( ) }1 1 1α     NORMAL  MULTIPOLES  (IN UNITS)   (22)

a
A

C m
C n

C m
nn

n
n= × = − × + + +10 104 4

( )
( )

( )
sin{( ) }1 1 1α      SKEW  MULTIPOLES  (IN UNITS)      (23)

Since all the terms other than the most dominant term are generally much smaller than
C(m), a multiplying factor of 104 is used in defining the multipoles in the above
equations. The fractional field coefficients bn and an are dimensionless numbers. With the
multiplying factor of 104, the values are said to be in “Units”. Thus “one Unit” represents
a field harmonic component whose strength is 10-4 of the fundamental harmonic of the
field at the reference radius. It should be noted that the numerical values of the multipoles
depend on the choice of reference radius. The multipoles reported by the RHIC magnet
measurements group are calculated using Eqs.(22)-(23) for all magnet types, while
following conventions 1 and 2 for the measurement setup.  In situations where it is
physically not possible to power the magnet in accordance with convention 2 due to
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Fig. 3 Alignment of a normal quadrupole having a positive field angle. The left hand
figure shows the magnet with the yoke placed level. The yoke is rotated
clockwise in the right hand figure to correct for the positive field angle.
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presence of diodes across the magnet, the measured phase angles are transformed at the
time of data analysis to conform to convention 2.

In terms of the normal and skew multipoles, the Cartesian components of field are [see
Eqs.(14)-(15)]

B r C m r R b n a nx ref
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B r C m r R b n a ny ref
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It is common (and for many purposes, very convenient) to combine the above two
equations into a single complex equation as follows:

B B C m b a Ry x n
n

n ref
n+ = × +−

=

∞
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0
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where    z  =  x + iy  =  reiθ  is the point of interest in the complex plane.

6.  Multipoles for Magnets in the Accelerator:

The purpose of measuring multipoles is to be able to describe the components of the
magnetic field at any point in the accelerator. The field components in turn are used for
beam tracking studies. The convention of power supply polarity followed during
measurements may not apply to the magnets as used in the accelerator. For example, the
dipole fields in the arc dipoles of one ring point upwards (α1=0), thus following
convention 2 (see Fig.2), but point downwards (α1=π) in the other ring, thus violating
convention 2. Similarly, the choice of coordinate system for tracking studies may not
coincide with the coordinate system used during the measurements. Such deviations from
the measurement conventions require transformation of the reported multipoles before
these could be used. This section describes such transformation in various cases of
interest.

6.1  Transformation due to choice of a different coordinate system:

Let us first consider a situation where a 2m-pole magnet is powered in the machine in
accordance with the measurement convention 2. This means that when viewed from the
lead end, the magnet is either a positive normal magnet (αm~0), or a positive skew
magnet (αm~3π/2m). In RHIC, following the “MAD” coordinate convention used in most
tracking codes, such as TEAPOT, the positive X-axis is always defined to be radially
outwards from the center of the ring. We shall denote the machine X-axis by X’, as
shown in Figs.4 and 5. Similarly, the positive Y-axis in the machine is always defined to
be pointing vertically upwards, and is denoted by Y’ in Figs.4 and 5.
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A magnet in the ring can have its leads located either in the clockwise direction, as shown
in Fig.4, or in the counter-clockwise direction, as shown in Fig.5. It should be recalled
that based on convention 1, the X-axis for measurements is always defined as pointing
towards the right hand side when viewed from the lead end. Thus, in the case of magnet
leads located in the clockwise direction, the X’-Y’ coordinate system of the machine is
identical to the X-Y coordinate system used for measurements. No transformation of
multipoles is therefore necessary in this case.

LEAD
END

X'Y'
RING

CENTER

TOP VIEW

BEAM

X, X'

Y, Y '

RING
CENTER MAGNET

SIDE VIEW  from  Lead End  of  Magnet 

Fig. 4 The coordinate system X’-Y’ used in the machine. The X’ axis always points radially
outwards from the center of the ring. The Y’ axis always points vertically upwards. For
a magnet installed with the lead end located in the clockwise direction, the X’-Y’
coordinate system is identical to the X-Y coordinate system used in the measurements of
multipoles. At the present time, all tracking studies assume that the beams travel in the
clockwise direction in both the rings.
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SIDE VIEW  from  Lead End  of  Magnet 

X

Fig. 5 The coordinate systems for a magnet installed with the lead end located in the
counterclockwise direction. The machine x-axis, denoted by X’ is opposite to the X-axis
used in the measurements of multipoles. The y-axes in both the coordinate systems are
the same, and point vertically upwards.
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When the magnet leads are located in the counterclockwise direction in the ring, the X’
axis points in a direction opposite to the X-axis of measurements, as shown in Fig.5. The
components of field used by the machine are Bx’ = –Bx and By’=By. In analogy to Eqs.(24)
and (25), the multipoles ′bn  and ′an  in the machine’s reference frame are defined by

B r C m r R b n a n B rx ref
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n n x′
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To obtain a relationship between ( ′bn , ′an ) and (bn,an), we make use of the above two
equations along with the following relations:

′ = − ′ = − ′ = − +θ π θ θ θ θ θ; cos( ) ( ) cos( ); sin( ) ( ) sin( )      n n n nn n1 1 1                   (29)

Using Eqs.(24)-(25) and (27)-(29), it is easy to show that

′ = − ′ = − +b b a an
n

n n
n

n( ) ; ( )1 1 1                                REVERSAL OF X-AXIS             (30)

Eq.(30) defines the multipoles in the machine’s coordinate frame in terms of the
measured multipoles for the case of Fig.5, assuming that the magnet is still powered in
accordance with measurement convention 2.

At the time of measurements, it is not known as to how a given magnet is going to be
installed in the ring. The magnets database (in the form of FoxPro tables maintained by
the magnet measurements group and the MAGBASE tables maintained by the accelerator
physics group) therefore contains the multipoles bn and an measured under similar
conditions following conventions 1 and 2 for all the magnets.

6.2  Magnets not corrected for field angle during installation:

Most magnets in the RHIC accelerator will be installed after correcting for the field angle.
However, for multi-element assemblies, it is only possible to correct for just one of the
several elements. Since the reported multipoles are always in a reference frame where the
field angle is zero, we must correct for a slight rotation of the magnets in the accelerator.
If ε is the field angle of the magnet as installed in the accelerator, then all phase angles are
increased by an angle ε. Using the definitions in Eqs.(12)-(13) and (22)-(23) for the
normal and skew components, we arrive at the transformation

b b n a n

a b n a n
n n n

n n n

→ + + +
→ − + + +

  cos{( ) } sin{( ) }

sin{( ) } cos{( ) }

1 1

1 1

ε ε
ε ε

                         FIELD  ANGLE  ε      (31)
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6.3  Magnets powered in the machine opposite to convention 2:

The power supply convention for measurements is adopted for the sake of uniformity. In
actual practice, the magnets in the accelerator could be powered in any of the two
possible polarities. For example, the arc dipoles in one ring are powered opposite to the
arc dipoles in the other ring. Similarly, the power supply polarity used for a quadrupole
depends on the direction of particle motion and on whether it is a focusing or a
defocusing quadrupole. Once again, the multipoles used for tracking studies must be
suitably modified in order to correctly obtain the components of the magnetic field.

The transformation of multipoles for a change in the direction of current flow are really
quite simple to arrive at. Since a change in the direction of current flow changes the
direction of all field lines, we have,

B B B Bx x y y→ − → −;                                                                                         (32)

The above transformation can be achieved by having

So far, we have assumed that the quantity C(m) in the expansion of field components in
Eq.(24)-(28) is a positive quantity. However, in practice, it is more convenient to imple-
ment the transformation in Eq.(33) by simply changing the sign of C(m), instead of
changing the sign of every harmonic. As an example, all arc dipoles are installed with
their lead ends in the clockwise direction, thus requiring no change in coordinate axes.
Thus, one could directly use the measured multipoles for all the arc dipoles in the
accelerator with positive C(1) for one ring and a negative C(1) for another. Using a
negative value for C(1) has the same effect as changing the sign of all multipoles.

The actual sign of C(m) to be used in a 2m-pole magnet is determined by convention 2. If
this convention is followed, C(m) is positive; otherwise it is negative. Specific examples
for dipole and quadrupole magnets in the RHIC arc regions are given in Table I. With this
convention for the sign of C(m), we can rewrite the transformation given by Eq.(33) as

b b a a C mn n n n→ →; ;             ( ) <  0       CHANGE IN DIRECTION OF CURRENT     (34)

The transformation discussed in this section is summarized in Fig.6. As shown in the
figure, there are only two questions to be answered for arriving at the correct expressions
for Bx’ and By’ used by tracking programs. The first question is the location of magnet
leads in the ring. For leads located in the clockwise direction, no transformation of the
measured multipoles are required. When the leads are located in the counter-clockwise
direction, the measured multipoles are transformed according to Eq.(30). The second
question addresses the power supply polarity. If the polarity is consistent with the
measurements (convention 2), then the sign of C(m) is chosen to be positive, otherwise it
is negative. The magnitude of C(m) is given by the product of the measured transfer

CHANGE IN DIRECTION OF CURRENT
KEEPING  C(m) > 0

(33)b b a an n n n→ − → −;        
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function and the magnitude of the current. The Cartesian components of the field can then
be obtained using Eqs.(27) and (28). It should be noted that this procedure is uniformly
applicable to all types of magnets in RHIC, irrespective of the multipolarity of the most
dominant term. In actual practice, the RHIC accelerator physics group implements the
transformation somewhat differently, as discussed in the next section.

Location of
Magnet Leads
in the Ring

Power Supply
Convention

Followed Not Followed

C(m) > 0 C(m) < 0

C(m)

Use Eqs.(27)-(28)

Counter-ClockwiseClockwise

|C(m)| =  T.F. x |Current|

′ =

′ =
b b

a a
n n

n n

′ ′b an n,    

′ = −

′ = − +

b b

a a
n

n
n

n
n

n

( )

( )

1

1 1

TABLE  I.  Signs of C(m) for Various Magnets in RHIC

Magnet Type Beam Enters Sign of C(m)
Arc Dipole (Blue Ring) Non-Lead End* C(1) > 0
Arc Dipole (Yellow Ring) Lead End* C(1) < 0

Arc Quad (Focusing) Non-Lead End C(2) > 0
Arc Quad (Defocusing) Non-Lead End C(2) < 0

Arc Quad (Focusing) Lead End C(2) < 0
Arc Quad (Defocusing) Lead End C(2) > 0

* The direction of beam is not relevant for the dipole magnets.

Fig. 6 Flow chart describing the transformation and sign conventions required to arrive at
multipoles for use in tracking studies from the multipoles reported by the RHIC magnetic
measurements group. It is assumed that the reported multipoles bn and an are already
corrected for field angle using Eq.(31), if required. The RHIC accelerator physics group
implements the transformation somewhat differently, as discussed in Sec.7.
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7.  Implementation in RHIC Tracking Studies:

The algorithm for transformation discussed in Sec.6, while quite general in approach, can
be somewhat confusing in implementation. In particular, it may be difficult to keep track
of the sign convention for the quantity C(m). Another “disadvantage” of the approach in
Sec.6 is that for some magnets, the most dominant term (for example, b1 for a normal
quadrupole) may become negative when the magnet is installed with the lead end in the
counterclockwise direction (see Eq. 30). Furthermore, in RHIC tracking studies, the sign
of the quantity C(m) is assigned based on bending/focusing properties of a magnet. This
makes it necessary to implement the transformation of multipoles somewhat differently.

A close look at Eq.(30) suggests that we may classify all magnets into two categories–
one, where the most dominant term does not change its sign upon a reversal of the X-axis,
and another where the most dominant term changes sign. Examples of the first category
are normal dipoles, skew quadrupoles, normal sextupoles, skew octupoles, and so on. The
primary field in these magnets has a reflection symmetry about the Y-Z plane, as can be
seen from Fig.2. Similarly, skew dipoles, normal quadrupoles, skew sextupoles, normal
octupoles, and so on fall into the second category. The primary field in these magnets has
a reflection anti-symmetry about the Y-Z plane, also seen in Fig.2. We rewrite the
transformation in Eq.(30) separately for the two categories of magnets in such a way that
the most dominant term of a magnet remains positive:

′ = − ′ = − +b b a an
n

n n
n

n( ) ; ( )1 1 1         MAGNETS WITH REFLECTION SYMMETRY ABOUT Y-Z PLANE                (35)

′ = − ′ = −+b b a an
n

n n
n

n( ) ; ( )1 11           MAGNETS WITH REFLECTION ANTI-SYMMETRY ABOUT Y-Z PLANE    (36)

With this choice of sign convention (the most dominant term always positive), it is
possible to relate the quantity C(m) to the behavior of the field at the origin, helping in the
determination of its appropriate sign, without referring to the measurement sign
convention 2. Let us first consider a 2(m+1)-pole normal magnet. The most dominant
term in this case will be ′bm  ~ 104. From Eq.(28), the vertical component of the magnetic
field at any point along the X’-axis is given by

B x C m b x Ry n
n

ref
n

′
−

=

∞
′ = × + ′ ′∑( , ) ( ) ( / )0 10 14

0

                                                     (37)

Taking partial derivatives m times, and evaluating at the origin, we get,
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Noting that ′bm ~ 104 and always positive for a normal 2(m+1)-pole magnet, we can write,
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         NORMAL  2(m+1)-POLE MAGNET   (39)

This relates the quantity C(m+1) to the derivatives of the field at the origin. For example,
for a normal dipole, C(1) is positive if By’ is positive. Similarly, for a normal quadrupole,
C(2) is positive if ( / )∂ ∂B xy′ ′ > 0 , and so on. It should be noted that the power supply

polarity sign convention used by the RHIC magnet measurements group is also consistent
with this analysis and gives a positive m-th derivative of the field at the origin with a
positive C(m+1).

For a skew magnet with a dominant 2(m+1)-pole term, a similar analysis shows that

C m
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x y

ref
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 ×′
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1
0 0

∂

∂
             SKEW  2(m+1)-POLE MAGNET    (40)

7.1  Equivalence with the approach in Section 6:

The purpose of the transformation discussed in this note is to obtain the coefficients to
use in order to arrive at the correct components of the magnetic field. The general
approach in Sec.6 must yield the same result as the one followed by RHIC accelerator
physics group and described in this section. Let us examine this equivalence for a specific
case of normal quadrupoles.

At present, the RHIC tracking studies assume that the beams in both the rings travel in
the clockwise direction, as shown in Fig.4. Also, in the tracking studies all focusing
quadrupoles are assigned a positive strength and all defocusing quadrupoles are assigned
a negative strength. Under the assumption of a clockwise beam entering a quadrupole
from the non-lead end, as shown in Fig.4, a focusing magnet must be powered in
accordance with the measurement sign convention 2. The conformance with sign
convention 2 for other configurations can be similarly determined. The various
possibilities for a normal quadrupole are summarized in Table II. As can be seen from the
table, the product of ′b1  and C(2) has the same sign, irrespective of the approach taken for
the transformation. Based on Sec.6, ′b1  is positive for the lead end placed clockwise,
while it is negative for the lead end placed counter clockwise. The sign of C(2) depends
on whether the magnet is focusing or defocusing and which end the beam enters. On the
other hand, based on the transformation in Sec.7, ′b1  is always positive and the sign of
C(2) simply depends on whether the magnet is focusing or defocusing (since the beam
always travels in the clockwise direction). A similar equivalence between the two
procedures can be verified for other magnet types.



14

References:

[1] E. Willen, P. Dahl and J. Herrera, SLAC Summer School on Physics of Particle
Accelerators, Stanford Linear Accelerator Center, Stanford, CA, 1985, in AIP
Conference Proceedings 153.

[2] See for example:

J. Herrera, Magnet Test Group Note   30, September 9, 1980.

J. Herrera, Magnet Test Group Note   181, January 27, 1982.

J. Herrera, Magnet Test Group Note   244, October 15, 1982.

J. Herrera, Magnet Test Group Note   250, November 16, 1982 (This note describes
the transformation of field parameters due to a shift in the origin – a topic not
covered in the present note).

TABLE  II. Comparison of Transformations based on Sec.6 and
Sec. 7 for a Normal Quadrupole

Lead Quadrupole From Section 6 From Section 7
End Type ′b1 C(2) ′b1 C(2)

CW Focusing > 0 > 0 > 0 > 0
CW Defocusing > 0 < 0 > 0 < 0
CCW Focusing < 0 < 0 > 0 > 0
CCW Defocusing < 0 > 0 > 0 < 0


